组合数有关的一些求和公式
(1)$\mathrm{C}^m_n=\mathrm{C}^{m-1}_{n-1}+\mathrm{C}^{m}_{n-1}$
(2)$m\mathrm{C}^m_n=n\mathrm{C}^{m-1}_{n-1}$
(3)$\mathrm{C}^k_n\mathrm{C}^m_k=\mathrm{C}^m_n\mathrm{C}^{k-m}_{n-m}$
(4)$\mathrm{C}^0_n+\mathrm{C}^1_n+\mathrm{C}^2_n+\cdots+\mathrm{C}^n_n=2^n$
(5)$(\mathrm{C}^0_n)^2+(\mathrm{C}^1_n)^2+(\mathrm{C}^2_n)^2+\cdots+(\mathrm{C}^n_n)^2=\mathrm{C}^{n}_{2n}$
(6)$1\mathrm{C}^1_n+2\mathrm{C}^2_n+3\mathrm{C}^3_n+\cdots+n\mathrm{C}^n_n=n\cdot2^{n-1}$
(7)$1^2\mathrm{C}^1_n+2^2\mathrm{C}^2_n+3^2\mathrm{C}^3_n+\cdots+n^2\mathrm{C}^n_n=n(n+1)\cdot2^{n-2}$
(8)(※)$\mathrm{C}^0_n+\frac{1}{2}\mathrm{C}^1_n+\frac{1}{3}\mathrm{C}^2_n+\cdots+\frac{1}{n+1}\mathrm{C}^n_n=\frac{1}{n+1}(2^{n+1}-1)$
(9)(※)$\dfrac{\mathrm{C}^1_n}{1}-\dfrac{\mathrm{C}^2_n}{2}+\dfrac{\mathrm{C}^3_n}{3}-\cdots+(-1)^{n-1}\dfrac{\mathrm{C}^n_n}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}$
几道题目
1.(1)等比数列$\{a_n\}$中,$a_1=2,a_8=4$,函数$f(x)=x(x-a_1)(x-a_2)\cdots(x-a_8)$,则$f^{′}(0)=$__________.
(2)函数$f(x)=(x-1)(x-2)(x-3)(x-4)$在$x=3$处的导数为__________.
(3)函数$f(x)=(x-1)(x-2)\cdots(x-n)$,则$\displaystyle\sum_{k=1}^{n}\frac{1}{f^{′}(x)}=$__________.
题源:蓝宝书P143
2.(1)设$I$为$\Delta ABC$的内心,$AB=5,AC=6,BC=7.\overrightarrow{IP}=x\overrightarrow{IA}+y\overrightarrow{IB}+z\overrightarrow{IC},0\leq{x,y,z}\leq{1}$,则动点$P$的轨迹所覆盖的平面区域的面积等于__________.
(2)点$O$是正四面体$A_1A_2A_3A_4$的中心,$|OA_i|=1(i=1,2,3,4).$若$\overrightarrow{OP}=\lambda_1\overrightarrow{OA_1}+\lambda_2\overrightarrow{OA_2}+\lambda_3\overrightarrow{OA_3}+\lambda_4\overrightarrow{OA_4},$其中$0\leq\lambda_i\leq1(i=1,2,3,4),$则动点$P$扫过的区域的体积为__________.
题源:(2)为高三上第一次月考11题
3.构造定义域为$\mathbf{R}$函数$f,g$,使得$f[g(x)]$严格单调递增,$g[f(x)]$严格单调递减. > 详细解答 题源:2011罗马尼亚大师杯、月考改编